Bell and Specialty Pepper Evaluations for Bacterial Spot Resistance, Yield, and Quality

Brent Rowell, R. T. Jones, W. Nesmith, A. Satanek, W. Turner, and J.C. Snyder
Dept. of Horticulture, N-318 Agric. Science North, Univ. of Kentucky, Lexington, KY 40546-0091

Introduction

After completing a three-year (1995-97) evaluation of bell pepper cultivars under induced bacterial spot (Xanthomonas campestris pv. vesicatoria or Xcv) and bacterial spot-free environments, we began a new series of trials in 2000 to compare new cultivars with previously recommended cultivars that were either highly resistant (‘Boynton Bell’) and/or that had very attractive fruits (‘X3R Wizard’). While spot resistant pepper cultivars with the Bs2 gene (resistance to Xcv races 1, 2, and 3) gained widespread acceptance in the state, a number of new resistant cultivars had been released since 1997. In addition to bells, we also wanted to screen a large number of hot and specialty peppers, some of which also carry the Bs2 gene. Out-of-state buyers have expressed a strong interest in sourcing hot and specialty peppers from Kentucky. Bell varieties were tested again in replicated trials at two locations again in 2001 while hot and specialty peppers were observed for a second year in non-replicated ‘RACE’ trials at the same locations.

Materials and Methods

Near-duplicate trials were planted at the Horticultural Crops Research Station in Lexington (LEX) and at an isolated location in eastern Kentucky at the Robinson Experiment Station in Quicksand (QSND). Sixteen bell and 46 hot and specialty pepper cultivars were seeded in the greenhouse at LEX on 26 March. Seedlings were grown in 72-cell plastic trays and transplanted to the field on 16 May (LEX). Fourteen of the same bell cultivars and all of the same hot/specialty cultivars were transplanted at QSND on 29-30 May. Each LEX trial received 62 lb N/acre prior to planting supplemented by an additional 38 lb N/acre divided into 3 weekly fertigations from 27 June to 12 July (100 lb N/acre season total). Trials at QSND received preplant applications of 50 lb N/acre supplemented by 60 lb N/acre divided into 4 fertigations applied from 13 June to 20 July (110 lb N/acre season total). Phosphorus and potassium were applied prior to planting at both locations according to soil test recommendations.

Plots at both locations consisted of 16 plants in double rows with four replications in a randomized complete block design for bells and in single plots for hot and specialty peppers. All were planted on raised beds with black plastic mulch and drip irrigation. Plants of all cultivars were spaced 12 in. apart in the row with 15 in. between the two rows on each bed. Beds were 6 ft apart from center to center. A tank mix of maneb+fixed copper was applied weekly for bacterial spot (BLS) protection at Lexington.

No preventive fungicide treatments were applied at QSND in order to encourage the development of a natural BLS epidemic. No insecticides were required in the field at LEX or QSND. A pheromone trap for adult male European corn borers was placed adjacent to the trial field at LEX.
Thirteen new bell cultivars with the Bs_2 gene were compared with resistant controls ‘Boynton Bell’ and ‘X3R Wizard’ and with a susceptible control, ‘King Arthur’ (Bs_1 only, Table 1). The thirteen new cultivars included seven from the 2000 trial and six which were tested for the first time in 2001. Mature green fruits were harvested four times in LEX and twice at QSND.

 Marketable fruits were graded and weighed according to size class (U.S. No. 1 extra large, large, medium). We also weighed misshapen fruits which could be marketed to foodservice as ‘choppers’ (LEX only). Yields in each size class were multiplied by their respective wholesale market prices to determine gross returns (‘income’) for each cultivar. The income variable has been a good indicator of a cultivar’s overall performance, taking into account yields of the different size classes and their price differentials. Prices from 2000 were also used for the 2001 trials.

Hot and specialty peppers included a group of 13 jalapeño cultivars of which two had the Bs_2 resistance gene (‘X3R Ixtapa’ and ‘El Rey’= SAX 7603) and others claiming multiple virus resistance (Table 3). These were compared with ‘Mitla’. Other pepper types included were three serrano cultivars, six anaheim cultivars, seven poblano/ancho cultivars (entry SVR 35-4845-7 has the Bs_2 gene), four Italian/cubanelle cultivars, four hot banana/wax cultivars (X3R Hot Spot and SVR 35-4846-7 with Bs_2 gene), six sweet banana/wax cultivars (‘Pageant’, ‘Sweet Spot’, and PX 35-4360-7 with Bs_2 gene), two fresno cultivars, and two pepperoncini cultivars (Tables 4 and 5).

Fruit appearance ratings. All bell pepper fruits harvested from all replications at the second harvest (July 19) at LEX were laid out in the field for careful examination and quality ratings. All fruits from single plots of hot and specialty pepper cultivars were evaluated in the same way at LEX on July 30. Bell pepper fruits from two replications were evaluated at QSND (August 9, first harvest). Overall appearance ratings took several things into account including, in order of importance: overall attractiveness, shape, smoothness, degree of "flattening" (bell cultivars only), color, and uniformity of shape.

Plant support requirements. Some of the hot and specialty pepper cultivars required staking and tying in these trials which used close spacings, double rows, and plastic mulch with drip irrigation. All specialty cultivars at LEX were inspected at maximum fruit load to determine if staking and tying were needed; those requiring support are indicated in Tables 4 and 5. Tomato stakes (shorter stakes could also have been used) were driven into the ground at the four corners of individual plots; plants were ‘fenced in’ by running a string (tomato twine) around these four stakes. A single stringing was adequate for some cultivars while others required two or three successive stringings.

Inoculation and disease assessment

As in previous years, LEX plots were sprayed weekly with copper+maneb to help protect against bacterial spot while QSND plots were left unsprayed in order to encourage the development of a natural epidemic. June weather conditions in QSND were very favorable for BLS epidemic development and a natural epidemic did occur early in the season. Bell and specialty cultivars were assessed only once at QSND for BLS symptoms on June 28. Symptoms were extensive and severe on some cultivars in the hot and specialty trial by that date. BLS
symptoms were scored as follows: 0 = no symptoms, 1 = very few (trace) symptoms visible, 2 = symptoms obvious but not extensive, and 4 = extensive symptoms (plants severely affected). These observations were made prior to the inoculation attempt described below.

In order to encourage a more uniform BLS epidemic within the trial, an attempt was made to inoculate all bell cultivars with inoculum collected from the hot pepper trial: About 300 leaves with typical symptoms were collected at random from various susceptible cultivars within the hot pepper trial plot on July 10. These were placed in a plastic bucket with sufficient distilled water to cover the leaves. The mixture was stirred for about 10 minutes with a wooden stick to enhance extraction of the bacteria, making an effort to crush some leaves on the side of the bucket. The mixture was then poured through a cotton bag to remove leaf debris and squeezed by hand. Two gallons of this mixture were diluted further with water to make a total volume of 4 gallons. This mixture was applied uniformly to all plants in the bell pepper trial using a hand-operated sprayer. The inoculation attempt was made in late afternoon, within 15 minutes of the extraction. Heavy rains had preceded the inoculation attempt—the ground and foliage were wet during the inoculation and remained wet until mid-morning the following day. We considered this procedure to be a relatively simple means of ensuring more uniform epidemics using only races of the bacterium already found within the trial; we have successfully used this method in trials with other crops in the past.

About three hours after the inoculations, some of the mixture remaining in the sprayer was applied to pepper seedlings growing in a greenhouse on the Lexington campus. These seedlings developed extensive BLS symptoms within 10 days.

Results and Discussion

As in previous years, we wanted to encourage disease and evaluate resistance at QSND while keeping the LEX trial free of bacterial spot. No bacterial spot symptoms were observed in the bell or hot/specialty trials in LEX.

Bell cultivars. Total marketable yields, gross incomes, and fruit quality characteristics for bell cultivars grown without bacterial spot at LEX are shown in Table 1. Although yields were somewhat lower than in 2000, most of the cultivars were high yielding (20-25 tons/acre) at LEX with 9 that were not significantly different from the top yielding cultivar ‘X3R Aristotle’ (Table 1). ‘Aristotle’, ‘King Arthur’ (bacterial spot susceptible), ‘4 Star’, ‘Boynton Bell’, and ‘Lexington’ were also in this category in the 2000 LEX trial.

Yields, income, and fruit quality characteristics for most of the same cultivars grown at QSND are shown in Table 2. While an early bacterial spot epidemic did occur in the trial at this location, it had ended abruptly and inexplicably by second week in July. No new bacterial spot lesions developed in the field at QSND after the inoculation attempt. In fact, all bacterial spot activity suddenly stopped in both the inoculated trial and the adjacent hot pepper trial which had not been inoculated. The reasons for this failure are not understood, but may be the result of environmental factors. Night temperatures below 61°F are known to suppress bacterial spot development regardless of daytime temperatures. Nights were unusually cool during the week.
following inoculation (58°F was the average night temperature for that week). In addition, although the plots were still soaked from heavy rains prior to inoculation, rainfall did not occur again until 8 days after the inoculation.

There were no statistically significant differences among cultivars for total marketable yields or gross incomes at QSND. Marketable yields ranged from 13 to 18 tons per acre (Table 2). Some of the highest yielding cultivars at QSND were also in the highest yielding group of varieties tested at LEX: ‘4 Star’, ‘X3R Aristotle’, ‘X3R Red Knight’. Yields appeared to have been affected by the early bacterial spot epidemic. ‘King Arthur’ and ‘X3R Wizard’ were among the lowest yielding cultivars at this location; these cultivars have been among the most susceptible in previous trials exposed to natural and induced BLS epidemics at QSND.

Scores for BLS symptom development from the 28 June assessment were extremely variable (c.v. = 116%) and no statistically significant differences were detected among cultivars (data not shown). This single assessment did not provide enough information to make valid comparisons for BLS resistance among cultivars. ‘Conquest’, a cultivar with the Bs2 gene, had the highest average score for BLS symptoms at this first and only assessment date.

While BLS symptoms had nearly disappeared by the third week in July, leaf spots caused by Phyllosticta sp. were evident on many of the bell and specialty cultivars by July 11.

Scores for BLS symptom development from the 28 June assessment were extremely variable (c.v. = 116%) and no statistically significant differences were detected among cultivars (data not shown). This single assessment did not provide enough information to make valid comparisons for BLS resistance among cultivars. ‘Conquest’, a cultivar with the Bs2 gene, had the highest average score for BLS symptoms at this first and only assessment date.

While BLS symptoms had nearly disappeared by the third week in July, leaf spots caused by Phyllosticta sp. were evident on many of the bell and specialty cultivars by July 11.

Scores for BLS symptom development from the 28 June assessment were extremely variable (c.v. = 116%) and no statistically significant differences were detected among cultivars (data not shown). This single assessment did not provide enough information to make valid comparisons for BLS resistance among cultivars. ‘Conquest’, a cultivar with the Bs2 gene, had the highest average score for BLS symptoms at this first and only assessment date.

While BLS symptoms had nearly disappeared by the third week in July, leaf spots caused by Phyllosticta sp. were evident on many of the bell and specialty cultivars by July 11.

Scores for BLS symptom development from the 28 June assessment were extremely variable (c.v. = 116%) and no statistically significant differences were detected among cultivars (data not shown). This single assessment did not provide enough information to make valid comparisons for BLS resistance among cultivars. ‘Conquest’, a cultivar with the Bs2 gene, had the highest average score for BLS symptoms at this first and only assessment date.

Fruit quality characteristics for bell cultivars are also shown in Tables 1 and 2. ‘Aristotle’ and Defiance’ received the highest fruit appearance ratings at LEX which were better than ratings for ‘X3R Wizard’. ‘Aristotle’, ‘Lexington’, ‘Defiance’, and ‘X3R Wizard’ had the darkest green fruits in the LEX trial. ‘Defiance’, ‘X3R Wizard’, and ‘X3R Red Knight’ received the best appearance scores at QSND. Many other cultivars received acceptable appearance ratings (6 or above at LEX or 5 and above at QSND) while ‘King Arthur’, ‘Boynton Bell’, ‘X3R Red Knight’, ‘Conquest’, and PR99Y-3 were rated lower than the others at LEX. ‘X3R Aristotle’ scored lower in overall appearance at QSND than at LEX. ‘King Arthur’ had the lowest score at QSND. ‘King Arthur’ has had consistently low fruit appearance scores in a number of trials; we consider it and similar cultivars better suited to foodservice markets.

Cultivars that were the highest yielding and which had acceptable or better fruit quality ratings at both locations included ‘X3R Aristotle’, ‘4 Star’, and ‘Orion’. A possible disadvantage of a cultivar like ‘4 Star’ was its light to medium green-colored fruits (also light green in the 2000 trial); it may be difficult to market these lighter colored cultivars when buyers are have become accustomed to receiving those with darker fruits like ‘X3R Wizard’.

Jalapeños. Yields and fruit characteristics of the 13 jalapeño pepper cultivars grown in single plots at LEX and QSND are shown in Table 3. Two of these cultivars carried the Bs2 gene for bacterial spot resistance. Most jalapeño cultivars had high marketable yields at LEX ranging from 14 to 27 tons per acre with three cultivars exceeding ‘Mitla’ (Table 3). Among these ‘Coyame’, ‘Summer Heat 6000’, and RPP 7042-VP had the most attractive fruits.

Cultivars were exposed to a natural bacterial spot epidemic early in the season at QSND; however, the epidemic had nearly disappeared by mid-July and only a single assessment for symptoms was obtained. Unlike results from the 2000 jalapeño trial, the two cultivars with the Bs2 gene and ‘Jalandro’ appeared to be most affected by this short-lived epidemic (Table 3).
Serranos. Marketable yields for the three serrano cultivars at LEX ranged from 15 to 22 tons per acre with ‘Tuxtla’ and ‘Serrano del Sol’ having the highest yields and most attractive fruits (Table 4). ‘Tuxtla’ was also the highest yielding and most attractive serrano in 2000.

Anaheims. Yields of the six anaheim cultivars ranged from 15 to 31 tons per acre at LEX; ‘Novajoa’ was the highest yielding while PX-35-4606-7 and ‘Anaheim TMR 23’ had the most attractive fruits (Table 4). ‘Novajoa’ was also highest yielding at QSND in spite of severe BLS symptoms early in the season (Table 4).

Poblano/anchos. Yields among the seven poblano cultivars at LEX ranged from 4 to 21 tons per acre. ‘Ancho Villa’ was again (as in 2000) the highest yielding with the largest fruit size (Table 4); fruits of this cultivar, however, were lighter colored which could possibly be a disadvantage in some markets. The only entry with the Bs2 gene for resistance to bacterial spot (SVR 35-4845-7) was high yielding and had the highest appearance rating at LEX. Most poblano/anchos cultivars are quite susceptible to bacterial spot and yields at QSND may have been affected by the early epidemic at this location (Table 4). ‘Mulato Isleno’ had very low yields at both locations.

Italian/cubanelles. Yields for the four Italian/cubanelle or frying peppers ranged from 17 to 28 tons per acre at LEX (Table 4). ‘Aruba’ had the highest yield and largest fruit size followed by ‘ACX 500’. As in 2000, ‘Corno di Toro’ was considered to have the most attractive fruits although they were light to medium green in color instead of the typical light green or pale yellow. ‘Key West’, a new cultivar with the resistance to bacterial spot, appeared to be unaffected by the early epidemic at QSND (Table 4).

Hot banana/wax. Two hot banana cultivars and ‘Santa Fe Grande’ were tested. ‘X3R Hot Spot’ (with the Bs2 gene) had the highest marketable yield and good appearance ratings at LEX (26 tons/acre, Table 5). Both ‘Inferno’ and ‘Santa Fe Grande’ had severe symptoms of bacterial spot associated with the early epidemic at QSND.

Sweet banana/wax. The six sweet banana or sweet wax cultivars included two with the Bs2 gene (‘Pageant’ and PX 35-4360-7); yields at LEX ranged from 21 to 32 tons per acre (Table 5). PX 35-4360-7 was the highest yielding entry at both locations and had the most attractive fruits. Most cultivars had many ‘C’- or apostrophe-shaped fruits. ‘Market Sweet’ was high yielding at LEX but exhibited severe BLS symptoms during the brief epidemic at QSND.

Fresno and pepperoncini. Two fresno cultivars—one with upright fruits and one with pendant fruits—were included in the trials. Marketable yield was higher and fruit size larger for the upright type (Table 5). ‘Pepperoncini’ from Rupp Seed Co. was the highest yielding of the two pepperoncini types tested at LEX. PX 17494 had more attractive fruits at LEX and had higher yields at QSND. The authors are not familiar with market requirements for pepperoncini types; these are usually brined and sold with pizza. Perhaps ‘c’-shaped pepperoncini fruits could be as desirable as straight fruits.
Acknowledgment

The authors would especially like to thank Darrell Slone, Janet Pfeiffer, Amanda Ferguson, Dave Lowry, Bonnie McCaffrey, Larry Blansford, Spencer Helsabeck, and John Holden for their hard work and generous assistance with these trials.